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Resistance to antiretroviral drugs remains an important limitation to successful human immunodeficiency

virus type 1 (HIV-1) therapy. Resistance testing can improve treatment outcomes for infected individuals. The

availability of new drugs from various classes, standardization of resistance assays, and the development of

viral tropism tests necessitate new guidelines for resistance testing. The International AIDS Society–USA

convened a panel of physicians and scientists with expertise in drug-resistant HIV-1, drug management, and

patient care to review recently published data and presentations at scientific conferences and to provide updated

recommendations. Whenever possible, resistance testing is recommended at the time of HIV infection diagnosis

as part of the initial comprehensive patient assessment, as well as in all cases of virologic failure. Tropism

testing is recommended whenever the use of chemokine receptor 5 antagonists is contemplated. As the roll

out of antiretroviral therapy continues in developing countries, drug resistance monitoring for both subtype

B and non–subtype B strains of HIV will become increasingly important.

A panel of the International AIDS Society–USA pub-

lished recommendations for HIV-1 drug resistance test-

ing in HIV-1–infected adults in 1998, 2000, and 2003

[1–3]. Since the 2003 publication, drug resistance test-

ing has become widespread in the developed world and

has been accepted as an important adjunct to the man-

agement of patients with detectable plasma viremia who

are receiving antiretroviral therapy. Moreover, person-

to-person transmission of drug-resistant viruses occurs
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in a variety of settings, including between adults and

from mother to child [4, 5], indicating that testing for

drug resistance before initiating therapy may be useful

even for treatment-naive patients. Novel resistance mu-

tations that confer resistance to older drugs continue

to be identified (figure 1), and newer-generation pro-

tease inhibitors (PIs) and reverse transcriptase inhibi-

tors have been developed to counteract mutations that

confer resistance to the older agents. Approval of agents

from new classes, like integrase strand transfer inhib-

itors (INSTIs) and entry inhibitors, assure that drug

resistance testing will become increasingly complex and

important in case management in the years ahead. Test-

ing methodologies have improved and are becoming

more sensitive, and tests for viral coreceptor use (i.e.,

tropism) have been introduced.

With increasing patient access to antiretroviral drugs

in the developing world, many of the same problems
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Table 1. Strength of recommendation and quality of evidence rating scale.

Category, grade Definition

Strength of recommendation
A Strong evidence to support the recommendation
B Moderate evidence to support the recommendation
C Insufficient evidence to support a recommendation

Quality of evidence
Ia,b Evidence from �1 randomized, controlled clinical trial
IIa,b Evidence from nonrandomized clinical trials; cohort or case-control studies
III Recommendation based on the panel’s analysis of accumulated evidence (expert opinion)

a Peer-reviewed publications.
b Presented in abstract form at peer-reviewed scientific meetings.

involving drug-resistant virus that are common in the devel-

oped world have begun to occur in the developing world, as

well. In addition, resistance patterns among the non–subtype

B strains of HIV-1, which are circulating more widely in de-

veloping countries, may differ from those seen among subtype

B strains in North America and Europe. Although resistance

testing is not yet widely employed in developing countries be-

cause of the costs involved, drug resistance will predictably

emerge as antiretroviral therapy is more widely introduced, and

the need for appropriate testing will increase. Expert advice is

important in the management of patients with drug-resistant

infection [8], but because it is not always available, this report

will attempt to provide updated recommendations for HIV-1

drug resistance testing and tropism testing in developed coun-

tries, with the anticipation that, over time, such recommen-

dations will also prove useful in developing countries.

METHODS

The panel was first convened by the International AIDS So-

ciety–USA (which is not related to the worldwide International

AIDS Society) in 1997 to develop evidence-based recommen-

dations for the assessment of HIV-1 drug susceptibility and the

management of drug-resistant HIV-1 infection in clinical prac-

tices in the developed world [1–3]. Panel members are not

compensated, and there is a process for panel member rotation.

Updated reports are initiated when enough new published or

presented information in the field accumulates to warrant re-

vising previous recommendations.

The panel was convened by conference call in mid-2007 and

met regularly thereafter to discuss new data published or pre-

sented at scientific conferences since its previous report [3].

Topic areas included new information about the prevalence of

drug resistance worldwide; new data on mechanisms of resis-

tance by drug class, including INSTI and entry inhibitor classes

that have become available since the previous report; devel-

opments in assays to determine viral tropism and replication

capacity; issues related to non–subtype B HIV-1; and updated

recommendations for the clinical use of HIV-1 drug resistance

and tropism testing. Individual panel members were appointed

to review topics to be considered. In some cases, pharmaceutical

or assay manufacturers were contacted to obtain relevant in-

formation in the public domain. Data on file, unpublished

observations, personal communications, and other forms of

data not previously published or presented in a scientific, public

forum were not considered for this report. Discussions of drugs

focused on those approved by the US Food and Drug Admin-

istration. Clinical recommendations were made by panel

consensus.

The quality and strength of the evidence were rated according

to a scale (table 1) that was modified in 2006 [9] and originally

adapted from published rating scales used by other organiza-

tions (e.g., the American Heart Association [10], American

Association for the Study of Liver Diseases [11], National In-

stitutes of Health [12], and Infectious Diseases Society of Amer-

ica [13]).

TRANSMISSION AND EPIDEMIOLOGY OF
DRUG-RESISTANT HIV-1

Transmission and prevalence of drug resistance in developed

countries. Transmission of drug-resistant HIV-1 has been ob-

served in most countries where antiretroviral treatment is avail-

able [14–22], and it jeopardizes the success of antiretroviral

therapy. Indeed, transmitted drug resistance generally leads to

a delay in virologic suppression [18, 23] and to an increased

risk of earlier virologic failure [24, 25]. Long-term persistence

of transmitted drug resistance in the absence of drug pressure

has been documented for many types of mutations [26–30],

as have specific revertant mutations for thymidine analogue

reverse-transcriptase inhibitor–associated resistance mutations

(TAMs) [29]. In contrast with patients with acquired drug-

resistant virus that emerged during therapy, patients with trans-

mitted drug-resistant virus do not have a reservoir of drug-

susceptible virus. Consequently, transmitted drug-resistant

virus can only change to drug-susceptible virus by back mu-

tation [30], and it will do so rapidly only if a substantial fitness

benefit occurs with reversion of the drug resistance mutation,
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as in the case of the M184V mutation in reverse transcriptase.

This mutation can revert relatively early after transmission [26],

in contrast with the delayed reversion that occurs with most

other mutations [26, 30]. This delayed reversion is different

from the reversion associated with acquired drug resistance, in

which archived, drug-susceptible wild-type virus reemerges

within weeks of withdrawal of the selective pressure of drug

treatment [31–34].

The prevalence of newly transmitted drug-resistant HIV-1

strains (primary HIV-1 drug resistance) varies widely with lo-

cation, transmission risk group, and the sampling time after

infection [14, 15, 18, 20–23, 35–37]. Variations in prevalence

are multifactorial and reflect different treatment exposures at

the population level, potential selection bias caused by non-

representative sampling of certain transmission risk groups,

different definitions of resistance [38, 39], different sampling

times after infection, and different risk behavior and access to

therapy among transmission risk groups. A large increase in

overall primary resistance, from 13.2% for the period 1995–

1998 to 24.1% for the period 2003–2004, was reported in New

York, New York, and the rate of transmitted multidrug resis-

tance increased from 2.6% to 9.8% over the same period [36].

A British group also reported high rates of primary resistance

in 2003: 19.2% for any drug, 12.4% for nucleoside analogue

reverse-transcriptase inhibitors (NRTIs), 8.1% for nonnucleo-

side analogue reverse-transcriptase inhibitors (NNRTIs), and

6.6% for PIs. High-level resistance was found in 9.3%. In con-

trast, a representative 10-year transmission surveillance study

(1996–2005), conducted by the Swiss HIV Cohort Study,

showed considerably lower rates: 7.7% for any drug, 5.5% for

NRTIs, 1.9% for NNRTIs, and 2.7% for PIs. Dual– or triple–

drug class resistance was observed in only 2% of patients [21].

The rate of transmission, including the transmission of mul-

tidrug-resistant virus, was stable over a 10-year period, with

the exception of NNRTI-resistant virus transmission, which—

as has been reported by other groups—increased in 2005 [16,

18, 20, 36, 40]. These examples demonstrate that specific coun-

tries and regions require separate surveillance systems to mon-

itor transmitted HIV drug resistance, because extrapolation

from foreign data may be misleading.

The CASCADE study [41] has reported the longest follow-

up time for patients with transmitted drug resistance to date;

this study found higher initial CD4+ T cell counts in patients

infected with drug-resistant virus than in patients infected with

wild-type virus. This initial higher CD4+ T cell count was fol-

lowed by a faster decrease in CD4+ T cell count, such that initial

differences in CD4+ T cell counts were lost over the 5-year

observation period. Thus, the effects of transmitted drug-re-

sistant HIV on the infection’s natural history before treatment

are not great.

Drug resistance acquired during antiretroviral therapy is

much more common than transmitted drug resistance. Cross-

sectional studies involving patients who have been treated but

who are viremic yielded probabilities for the presence of at least

1 drug resistance mutation of 76%–90% [42–47]. However,

considerable methodologic challenges exist in evaluating such

prevalence data. Drug resistance testing can be reliably per-

formed only if plasma HIV-1 RNA levels are 1500 copies/mL.

This is particularly important if a patient’s plasma HIV-1 RNA

level was suppressed to below the level of detection before the

time that drug resistance testing became available, when pa-

tients initially received suboptimal treatment, such as single-

or double-NRTI–only regimens. Estimates of prevalence are

confounded, because the denominator of all treated patients is

often not known, the practice of obtaining drug resistance test

results has changed over time, and cross-sectional analyses may

underestimate the prevalence of drug resistance [48]. In a recent

10-year longitudinal study from the Swiss HIV Cohort Study,

which took into account shifts in population size and in which

the denominator of treated subjects was known, the prevalence

of drug-resistant virus among antiretroviral therapy–exposed

patients was estimated to be 50%–60% in 1999 and decreased

to 39%–53% in 2006 [49]. The prevalence of triple drug-re-

sistant virus remained stable at 5%. These lower numbers are

likely to be attributable to the improving efficacy of treatment.

Transmission and prevalence of drug resistance in devel-

oping countries. Access to antiretroviral drugs in the devel-

oping world is increasing rapidly, although only a fraction of

individuals who need therapy are currently receiving it. As in

the developed world, an increase in transmitted resistance will

lag behind an increase in acquired drug resistance. Nevertheless,

with (1) 13 million people receiving antiretroviral therapy; (2)

treatment failure defined by clinical end points [50]; and (3)

limited availability of assays for routine determination of

plasma HIV-1 RNA levels and for detecting drug resistance,

acquired and transmitted drug resistance in resource-limited

settings will present formidable challenges. Even more extensive

drug resistance may emerge in this setting than in the developed

world [50]. Some studies have already demonstrated the pres-

ence of drug-resistant virus in patients with recent infections

in developing countries [51]. The World Health Organization

is developing a surveillance program to provide early warning

of increasing rates of transmitted resistance and to facilitate

additional treatment options [52].

Single-dose nevirapine is widely used in the developing world

to prevent mother-to-child transmission of HIV-1, but it selects

for nevirapine-resistant HIV-1 in 40%–60% of mothers, as de-

tected by population sequencing within 6–8 weeks of admin-

istration [53], and this resistance may compromise subsequent

response to nevirapine-containing regimens [51, 52, 54, 55].

Children who are born with infection despite nevirapine pro-

phylaxis have a high risk of developing resistance to nevirapine,
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which limits their future treatment options [54]. Coadminis-

tration of other antiretroviral drugs with nevirapine may reduce

the risk of drug-resistant infection in adults and children [56].

A number of characteristics of antiretroviral use in resource-

poor settings will affect the level of acquired drug resistance

among treated patients. For example, in a Thai cohort receiving

a fixed-dose combination of stavudine-lamivudine-nevirapine

and infrequent monitoring, virologic failure was associated with

more resistance (190% of isolates had NNRTI- and lamivudine-

resistance–associated mutations, and 130% had TAMs) [57]

than would be expected in the developed world at the time of

first viral rebound [50], although less resistance was observed

in cohorts with more-intensive plasma HIV-1 RNA level mon-

itoring [58, 59]. In the absence of real-time viral load moni-

toring, 155% of patients in Uganda who received zidovudine-

lamivudine-abacavir within the Development of Antiretroviral

Therapy in Africa study and who had detectable viremia at

week 48 had 1–4 TAMs, as well as the M184V mutation [60].

Limited access to antiretroviral drug programs may encourage

some infected individuals to share their antiretroviral drugs

with others, which may lead to suboptimal dosing. Such un-

disclosed therapy is likely to be the cause of drug resistance in

certain populations entering antiretroviral therapy rollout pro-

grams. Pretreatment drug resistant infection was detected in

∼10% of a subset of the Development of Antiretroviral Therapy

in Africa study recipients in Uganda and Zimbabwe [61].

MECHANISMS OF ANTIRETROVIRAL DRUG
RESISTANCE

Since the previous guidelines were published [3], several new

drugs have been approved, and novel mechanisms of resistance

have been elucidated. This section will review some of these

advances.

Reverse-Transcriptase Inhibitors

Etravirine. Etravirine (TMC125) is a second-generation

NNRTI that exhibits activity against many viruses that are re-

sistant to first-line NNRTIs. Etravirine has favorable safety,

pharmacokinetic, and antiviral activity profiles in heavily treat-

ment-experienced HIV-1–infected patients [62–67]. The im-

pact of pretreatment phenotype and genotype on the virologic

response to etravirine at week 24 was examined in the DUET-

1 and DUET-2 clinical trials [68–71]. Thirteen baseline HIV-

1 reverse-transcriptase mutations were associated with resis-

tance to etravirine in the DUET analyses: V90I, A98G, L100I,

K101E/P, V106I, V179D/F, Y181C/I/V, and G190S/A [70, 71];

of note, V179T was also identified in a separate US Food and

Drug Administration analysis [72]. In the pooled DUET study

results, 70% of subjects had 0 or 1 baseline etravirine mutation,

whereas 15% had �3 baseline etravirine mutations. Notably,

the reverse-transcriptase K103N mutation, which is often seen

in virus obtained from patients who experience virologic failure

during efavirenz and nevirapine treatment and which confers

broad cross-resistance within the first-generation NNRTI class,

was not associated with etravirine resistance [72].

Virologic responses were seen in the DUET trials despite the

presence of single etravirine mutations [70, 71]. The impact of

most of these etravirine mutations depended on the simulta-

neous presence of Y181C; however, Y181C had an impact only

when present with �1 additional mutation [70, 71, 73]. Having

a greater number of baseline etravirine-related mutations was

associated with a decreasing virologic response to etravirine,

particularly when �3 mutations were present [70, 74]. The

impact of specific etravirine mutational patterns on clinical

virologic responses has not been fully defined. No phenotypic

“cutoff” levels for clinical responses to etravirine are currently

available.

Antagonism among specific reverse-transcriptase mu-

tations. A potentially relevant and mechanistically interesting

antagonism among various thymidine analogue NRTIs, TAMs,

and the emergence of the tenofovir-associated K65R mutation

has been elucidated [75]. TAMs selected by zidovudine or sta-

vudine counteract the selection of the K65R mutation, although

TAMs and the K65R mutation do not appear on the same

genome because of competing mutational pathways. Thymidine

analogue NRTIs, such as zidovudine, may protect against the

emergence of the K65R mutation when combined with teno-

fovir, leading some clinicians to combine these agents. In con-

trast to HIV-1 drug resistance patterns described for tenofovir

and for the triple-NRTI regimen tenofovir-abacavir-lamivu-

dine, which selects for the K65R mutation more frequently, a

quadruple-drug regimen of tenofovir plus zidovudine-abacavir-

lamivudine in the COL40263 trial selected predominantly for

NRTI-associated TAMs in virus from patients in whom therapy

had failed [76].

Mutations in the connection and RNase H domains of re-

verse transcriptase. Mutations in the connection (E312Q,

G335C/D, N348I, A360I/V, V365I, T369I, A371V, A376S, and

E399D) and RNase H (Q509L) domains of reverse transcriptase

are selected by NRTI therapy (in addition to TAMs); these newly

recognized mutations, which are located outside of reverse tran-

scriptase regions covered by standard genotype assays, sub-

stantially increase resistance to zidovudine when TAMs are also

present [77–83]. They can increase cross-resistance to lami-

vudine, abacavir, and tenofovir (although to a much lesser ex-

tent) but do not increase resistance to stavudine or didanosine

[77–79]. NNRTIs (mainly nevirapine) are also affected [80, 82].

The Q509L and A371V/Q509L mutations with TAMs impair

the formation of RNase H cleavage products, which increases

zidovudine-monophosphate excision on RNA/DNA duplexes

by reducing template degradation. Q509L and A371V/Q509L

also increase the efficiency of excision of short RNA/DNA du-
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plexes [81]. The N348I mutation in the reverse-transcriptase

connection domain confers dual zidovudine-nevirapine resis-

tance via 2 interrelated mechanisms [82]. First, N348I decreases

the ability of nevirapine to inhibit HIV-1 reverse transcriptase;

second, N348I substantially decreases the rate of RNase H cleav-

age, which increases zidovudine-monophosphate excision by

reducing RNA/DNA template degradation. Furthermore, the

ability of nevirapine to stimulate RNase H is substantially re-

duced, compared with the wild-type enzyme. The N348I and

A360V mutations, in combination with TAMs, decrease the

efficiency of RNase H cleavage and increase the amount of

rescued reaction product after ATP-dependent excision. Mu-

tations N348I and A360V promote reverse-transcriptase dis-

sociation from an RNase H–competent complex, thereby re-

ducing RNA/DNA template degradation [83]. The N348I

mutation occurs relatively frequently and can emerge early dur-

ing therapy with regimens containing zidovudine and nevira-

pine [82]. The clinical impact of connection and RNase H

domain reverse-transcriptase mutations on virologic response

has not been determined.

PIs

Improved understanding of the importance of drug exposure

in PI activity and resistance has led to widespread use of low-

dose ritonavir boosting to increase drug levels, resulting in more

effective competition with viral substrates and reduced impact

of single mutations on drug activity. Large cohort data confirm

superior virologic suppression with ritonavir-boosted PI-con-

taining regimens, compared with unboosted PI-containing reg-

imens, in drug-naive patients [50]. The genetic barrier to re-

sistance (i.e., the number of mutations required for resistance

to develop combined with difficulty in their selection) is gen-

erally greater for ritonavir-boosted PI-containing regimens than

it is for unboosted PI-containing regimens. Resistance to ri-

tonavir-boosted PIs requires multiple mutations that vary

among PIs, and the degree of resistance depends on the number,

as well as the type, of mutations present [50, 73, 84, 85]. The

large number of mutations required for resistance makes the

selection of resistance to boosted PI regimens uncommon,

compared with the selection of resistance to NNRTI-containing

regimens, among drug-naive patients who are experiencing a

first regimen failure [50, 86]. Recently approved drugs, such

as darunavir and tipranavir, have improved virologic activity

in patients harboring PI-resistant HIV-1 [87–89].

Studies relating baseline (i.e., pretreatment) PI susceptibility

or mutations to virologic outcome have been performed for

boosted PI-containing regimens. Predictions of virologic suc-

cess can be made by measuring fold-change in susceptibility

(phenotype) or number and type of mutations (genotype). Ge-

notypic resistance scores and phenotypic clinical cutoff levels

derived from virologic outcome data are now available for dif-

ferent boosted PI-containing regimens [87–93]. Among these

regimens, the number and codon positions of PI mutations in

the resistance scores vary, with partial overlap among different

drugs. For example, the resistance scores of tipranavir-ritonavir

and darunavir-ritonavir both include mutations I84V and L33F

but differ with respect to many other mutations. Therefore,

virus harboring multiple PI mutations will show some degree

of reduced susceptibility to all boosted PI regimens, and the

clinical usefulness of each regimen may vary greatly. Phenotypic

resistance testing may be particularly beneficial in this setting.

The extent of both resistance and drug exposure affects PI

activity. Thus, considering both parameters might improve pre-

dictions of viral inhibition. The inhibitory quotient (i.e., the

ratio of the measured plasma minimum concentration value

divided by the IC50 value or IC90 value) characterizes this re-

lationship. Nevertheless, studies evaluating whether assays for

drug exposure add to the effectiveness of assays for resistance

have yielded conflicting results [94–99]. Inhibitory quotient

values better predict PI activity than do resistance or drug levels

alone in some, but not all, clinical studies. No randomized

studies have yet shown an overall benefit to using inhibitory

quotient calculations for PI dose adjustment in place of stan-

dard resistance testing.

In addition to mutations in the protease gene associated with

PI resistance, mutations in the gag cleavage site region, espe-

cially p7/p1 and p1/p6, can increase the viral fitness of viruses

resistant to PIs [100–103]. These mutations typically occur in

conjunction with drug resistance mutations in the protease gene

[104–106]. Specific patterns of cleavage-site mutations have

been described for certain PIs (e.g., A431V with L24I-M46I/L-

I54V-V82A, I437V with I54V-V82F/T/S, L449V with I54M/L/

S/T/A, and L449F/R452S/P453L with D30N-I84V). In contrast,

mutation P453L and the emergence of V82A were negatively

correlated [107]. Mutations in the C-terminal region of the

viral gag gene (K436E and/or I437T/V), located outside the

actual NC/p1 cleavage site, can be selected in vitro in the ab-

sence of conventional PI resistance mutations, and they can

confer resistance by merely changing the substrate of protease

and thereby increasing processivity of the enzyme [108]. These

mutations were also present in clinical isolates that had reduced

susceptibility to PIs but lacked major protease mutations.

Whether these cleavage-site mutations are of clinical relevance

and should be included in drug resistance assays remains to be

determined.

Entry Inhibitors

HIV-1 entry involves the interaction of gp120 with its primary

receptor, CD4, followed by binding to 1 of 2 chemokine re-

ceptors (chemokine receptor 5 [CCR5] or CXC chemokine

receptor 4 [CXCR4]) that serve as coreceptors [109]. Engage-

ment of the coreceptor triggers the assembly of the 2 heptad
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Figure 2. The left panel shows a typical inhibition curve of a suscep-
tible virus (solid line) with a typical competitive inhibitor (e.g., a protease
inhibitor). The IC50 value of the resistant virus (dotted line) is shifted to
the right (arrow). The right panel shows an example of a noncompetitive
inhibitor (e.g., a chemokine receptor 5 antagonist). The susceptible virus
(solid line) shows a typical inhibition curve, but in this case, the resistant
virus (dotted line) reaches a plateau. The maximum achievable percent
inhibition is shifted downward (arrow), but the curve does not shift to
the right; hence, the IC50 value remains unchanged.

repeats (HR-1 and HR-2) in the trimeric gp41 into a 6-helix

bundle that leads to the approximation and fusion of the cell

and virus membranes [110]. The third variable (V3) loop is

the major structural element of gp120 that determines core-

ceptor recognition and specificity, but regions outside of V3

contribute, as well [111–113].

Enfuvirtide. Enfuvirtide is a synthetic 36–amino acid oli-

gopeptide that inhibits HIV-1 entry by preventing the assembly

of HR-1 and HR-2 in the trimeric gp41 into a 6-helix bundle

[114]. The drug binds to the trimeric HR-1 complex, thereby

inhibiting fusion and blocking virus entry [115]. Resistance to

enfuvirtide is mediated by amino acid substitutions within HR-

1 at amino acid positions 36–45 of gp41 [116, 117]. The sub-

stitutions most frequently associated with resistance to enfu-

virtide include G36D/S/V/E, V38A/E/M, Q40H, N42T, and

N43D [118–120]. These mutations confer substantially reduced

binding of enfuvirtide to HR-1 and a substantial decrease in

antiviral activity in vitro [119]. In addition, the N126K and

S138A mutations in HR-2 may contribute to reduced suscep-

tibility to enfuvirtide [118]. Viruses carrying enfuvirtide resis-

tance mutations show reduced viral fitness in vitro in the ab-

sence of enfuvirtide [121]. Clonal analysis of plasma HIV-1

RNA obtained from patients receiving enfuvirtide in the ab-

sence of a fully suppressive antiretroviral regimen showed rapid

emergence of enfuvirtide resistance mutations [122]. The earlier

emergence of mutants with gp41 substitutions at amino acid

positions 36 and 38 suggests that these mutants may have an

initial fitness advantage over mutants with substitutions at co-

dons 40 and 43, which tended to emerge later.

Chemokine receptor antagonists. Small-molecule antago-

nists of the gp120-CCR5 interaction, such as maraviroc and

the investigational drug vicriviroc, are allosteric, noncompeti-

tive antagonists that bind to a similar site on CCR5 [123–125].

These drugs are potent inhibitors of HIV-1 [126, 127]. Mar-

aviroc is now approved in the United States for use in treat-

ment-experienced patients with exclusively R5 virus strains.

Phase III trials of vicriviroc are under way.

Resistance to CCR5 antagonists selected in vitro is mediated

by changes in HIV-1 gp120 that allow the envelope glycoprotein

to interact with the drug-bound form of CCR5. A variety of

amino acid substitutions associated with maraviroc and vicri-

viroc resistance have been described throughout the env gene;

most involve V3, but their effect on drug susceptibility depends

on the env backbone into which they are introduced [128, 129].

Phenotypically, resistance to the CCR5 antagonists manifests

not as a classic rightward shift of the IC50 curve but, rather, as

a plateau in the maximum achievable suppression of viral rep-

lication (figure 2). This plateau, referred to as the percent max-

imal inhibition, correlates with viral adaptation to use the in-

hibitor-bound form of CCR5 for entry [129, 130].

Few clinical isolates that are resistant to maraviroc or vicri-

viroc have been reported [131–133]. Overall, resistance of R5

virus appears to emerge slowly and is associated with mutations

in the V3 loop stem (and possibly elsewhere in the env gene),

similar to resistance that arises during in vitro passage exper-

iments. The particular mutations observed vary from isolate to

isolate. Thus, it is not yet possible to identify resistance to CCR5

antagonists on the basis of specific env mutations. Although

no signature mutations associated with maraviroc resistance

have yet been identified, changes at positions 13 and 26 in the

middle of the V3 loop appear to be important [130, 132, 134].

Likewise, data are insufficient to determine the extent of cross-

resistance within the class. In clinical trials, virologic failure of

CCR5 antagonists has been more frequently attributed to the

emergence and outgrowth of CXCR4-using viruses that pre-

existed as minority populations before the initiation of CCR5

antagonist therapy.

INSTIs

The INSTIs are a new class of antiretroviral drugs that selec-

tively target the HIV-1 integrase enzyme. Integrase catalyzes

numerous steps within the cytoplasm and nucleus of host cells

that allow proviral DNA to enter the nucleus and integrate into

host cellular DNA. This entire process is required for productive

HIV-1 replication. The approved drug raltegravir and other

candidate drugs that are in development inhibit the strand

transfer reaction.

Resistance to integrase inhibitors can emerge during treat-

ment failure. Phenotypic and genotypic assays have been de-

scribed that detect HIV-1 integrase resistance [135–137], but

plasma-based phenotypic and genotypic assays to detect HIV-

1 integrase inhibitor resistance are not yet clinically available.

As with PI resistance mutations, INSTI resistance mutations

are classified as either major or minor. Major mutations tend
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to be the primary contact residues for drug binding, based on

crystal structures, and have an effect on the drug susceptibility

phenotype. Major mutations are those selected first in the pres-

ence of the drug or those shown at the biochemical or virologic

level to lead to an alteration in drug binding or an inhibition

of viral activity or viral replication. Minor mutations generally

emerge later than major mutations and enhance the degree of

resistance or improve replicative fitness of the virus that con-

tains major mutations [73].

Raltegravir is a hydroxypyrimidinone carboxamide derivative

of the diketobutanoic acid family. It is approved in the United

States and in Europe for use in treatment-experienced HIV-1–

infected patients in combination antiretroviral regimens, based

on favorable safety, pharmacokinetic, and efficacy parameters

[138–143]. In phase II and III studies, virologic failure occurred

infrequently and was generally associated with the emergence

of resistance mutations [136]. In Merck protocol 005, a phase

II study of HIV-1–infected subjects with triple-class drug re-

sistance, genotyping by population sequencing was performed

at treatment failure. Phenotyping of patient-derived sequences

and site-directed mutants employed single-cycle infection as-

says on long-terminal repeat-responsive reporter cell lines.

Raltegravir failure was associated with integrase mutations

in 2 distinct genetic pathways, defined by �2 mutations, in-

cluding (1) a signature (major) mutation at either Q148H/K/

R or N155H and (2) �1 minor mutations unique to each

pathway. The major mutations all reduced susceptibility to ral-

tegravir and decreased viral replication capacity. Minor mu-

tations described in the Q148H/K/R pathway included L74M,

E138A, E138K, or G140S. These minor mutations consistently

enhanced the level of resistance to raltegravir and, when com-

bined with major mutations, improved viral replication capac-

ity in a subset of combinations. The most common mutational

pattern in this pathway is Q148H plus G140S. This Q148H-

plus-G140S pattern exhibited the greatest decrease of drug sus-

ceptibility ( 1100-fold phenotypic resistance) and was the fittest

variant seen (i.e., it had the highest replication capacity in both

infectivity and multiple-cycle replication assays).

Mutations described in the N155H pathway include this ma-

jor mutation plus 1 of either L74M, E92Q, T97A, E92Q plus

T97A, Y143H, G163K/R, V151I, or D232N [73, 136]. Mutations

observed in raltegravir protocols were similar to those selected

with different integrase inhibitors in cell culture [144, 145].

The impact of specific raltegravir mutational patterns on clin-

ical virologic responses has not been elucidated fully; thus, no

phenotypic cutoff levels for clinical response have been deter-

mined for raltegravir. The most important prognostic factor

that decreased the likelihood of virologic failure and drug re-

sistance was having a genotypic susceptibility score or phe-

notypic susceptibility score 10 for optimized background reg-

imen; thus, integrase inhibitors should always be paired with

other active agents in an HIV-1 treatment regimen [136].

HIV-1 DRUG RESISTANCE ASSAYS

There are 2 general types of resistance assays used in clinical

practice: genotypic assays (i.e., HIV-1 gene sequencing to detect

mutations that confer HIV-1 drug resistance) and phenotypic

assays (i.e., cell culture–based viral replication assays in the

absence or presence of drugs). Genotypic testing can be per-

formed with commercial assay kits or in-house protocols.

Blinded quality assurance programs indicate a very high con-

cordance between kits and in-house methods used [146–148].

The ability to detect drug-resistance mutations, however, can

vary substantially among laboratories [146, 149]. This wide

variation results from difficulties in recognizing viral mixtures,

particularly in heavily treatment-experienced patient popula-

tions [147, 150, 151], sequencing specimens with low viral

loads, and testing non–subtype B HIV [149]. Performance also

relates to the level of experience among laboratory personnel

[149], which suggests that appropriate operator training, cer-

tification, and periodic proficiency testing are important for

accurate genotyping. Resistance testing laboratories, therefore,

need to participate in quality assurance programs [146, 147,

149–152].

Despite numerous studies, appropriate interpretation of ge-

notypic and phenotypic drug resistance testing remains chal-

lenging. Results of genotypic tests use lists of predefined drug

resistance mutations [73] or classifications by computerized,

rules-based algorithms to characterize virus as “susceptible,”

“possibly resistant,” or “resistant” to each antiretroviral drug

[153–156]. The creation of rule-based algorithms is a difficult

and lengthy process, and the algorithms require frequent up-

dating. Algorithms vary considerably in the classification of

expected drug activity [150, 151, 156–159]. Differences appear

to be lowest for lamivudine and NNRTIs and highest for NRTIs

and PIs [150, 151]. The most stringent approach to building

algorithms is to evaluate the impact of mutational patterns at

the initiation of treatment with a specific drug with regard to

treatment response (e.g., decrease of plasma HIV-1 RNA levels

according to specific genotypic patterns). Considerable progress

has been made in identifying mutational baseline patterns that

predict clinical failure for specific drugs. These patterns are

currently available for the combinations lopinavir-ritonavir,

atazanavir-ritonavir, tipranavir-ritonavir, darunavir-ritonavir,

and amprenavir-ritonavir, as well as for zidovudine, stavudine,

didanosine, lamivudine, tenofovir, efavirenz, nevirapine, and

etravirine [70–72, 91–93, 157, 160–168]. The vast majority of

genotypic algorithms are based on data that were obtained using

subtype B viruses. Although no large differences exist with re-

gard to interpretation of drug resistance in non–subtype B HIV,

discrepancies between genotype and phenotype have been ob-
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served for abacavir and subtype CRF02_AG, atazanavir and

subtype C, and NNRTIs and subtype CRF01_AE [169]. HIV-

1 proteases in drug-naive West African patients appear to be

generally less sensitive to PIs [170]. More in vivo and in vitro

resistance data are clearly needed for non–subtype B HIV.

An alternative approach for the interpretation of genotypic

drug resistance information is to correlate genotypic data re-

garding the plasma HIV-1 RNA of a candidate gene with a large

database of paired phenotypes and genotypes [171–174]. Such

linkage then permits generation of a “virtual phenotype” by

assigning calculated fold-changes in IC50. Although actual and

virtual phenotypes show excellent correlation for most drugs,

superiority of virtual phenotype over genotype alone could not

be demonstrated in predicting clinical response to salvage reg-

imens [173, 175, 176]. Virtual phenotype is an approach to

genotype interpretation, and its main limitation is that predic-

tive power depends on the number of matched datasets avail-

able. Thus, variation is frequently higher in smaller datasets;

consequently, variation is frequently higher for newer drugs.

Furthermore, matches are based on preselected codons, not on

the entire nucleotide sequence.

Standard phenotypic testing, using recombinant virus assays,

is performed by few commercial laboratories. Current assays

amplify HIV-1 protease, a part of the HIV-1 reverse transcrip-

tase, as well as the 3′-terminus of gag, as a unit from plasma

virus, and they generate a recombinant virus pseudovirus with

other HIV-1 genes derived from a laboratory construct [177–

181]. A comparison between 2 different assays showed an over-

all concordance of 86.9%, with the highest concordance for PIs

(93.4%) and the lowest concordance for NRTIs (79.8%) [150].

However, even within drug classes, concordance can vary widely

among specific drugs (e.g., lamivudine has a very high con-

cordance of 93%, but abacavir has a concordance of only 74%

[150]). This recombinant technology is being modified so that

it can also test for susceptibility to INSTIs, fusion inhibitors,

and chemokine receptor antagonists [136, 182].

The results of phenotypic testing are usually presented as the

fold-change in susceptibility of the test sample compared with

a laboratory control isolate. The initial “technical” cutoff values,

representing the interassay variation of cloned virus controls,

did not accurately reflect the inherent variation in susceptibility

encountered in circulating viruses from drug-naive patients.

The normal distribution of susceptibility to a given drug for

wild-type isolates from treatment-naive individuals (i.e., the

“biologic” cutoff) was then adopted. Although clinical cutoffs

have been defined for many drugs, the relationship between

viral susceptibility and drug response is a continuum in which

progressively reduced viral phenotypic susceptibility to a par-

ticular drug results in progressively blunted reductions in

plasma HIV-1 RNA levels. For practical application, 2 different

clinical phenotypic cutoff values should be defined: one above

which clinical responses perceptibly diminish, compared with

those of wild-type virus (“intermediate” resistance), and one

above which no clinical response can be expected (“full” re-

sistance). Even partial activity can be useful when treatment

options are limited [183]. In evaluation of phenotypic cutoffs,

drug-specific susceptibility needs to be compared at baseline,

before switching to a new drug regimen, and with the drug-

specific treatment response (e.g., decrease in plasma HIV-1

RNA levels) that occurs after initiation of new therapy. Since

2003, clinical trial and cohort data have led to a substantial

increase in available clinical cutoff values, and such values are

now available for most approved drugs.

In addition to standard genotypic and phenotypic testing

used in clinical practice, other resistance testing assays may

prove to be useful in the future. The allele-specific PCR assay

[184–189] and the single-genome [190] and ultra-deep se-

quencing [191] assays are currently used to investigate the role

of minority variants harboring drug resistance that are present

below the level of detection by bulk plasma viral population

sequencing approaches. Studies involving treatment-naive and

treatment-experienced patients have shown strong associations

between the detection of low-frequency drug-resistant variants,

particularly those encoding resistance to NNRTIs, and subse-

quent treatment failure [192–194]. Further studies are required

to define the clinically relevant frequency of variants in the

virus population. Improvements in assay throughput and re-

ductions in cost are necessary before such assays are available

for patient management.

Replication capacity assays, which are designed to measure

in vivo fitness of a virus, remain an interesting research tool,

but they have not found a role in patient management [195].

A relatively simple and inexpensive alternative for estimating

the reduction of in vivo fitness induced by a given nonsup-

pressive antiretroviral treatment regimen is to determine the

differences in plasma HIV-1 RNA levels between pretreatment

and on-treatment periods (e.g., for patients lacking fully sup-

pressive treatment options); such information may be useful

in optimizing a nonsuppressive treatment regimen [196]. Fi-

nally, the cost-effectiveness of using resistance testing assays for

treatment-naive patients and for patients for whom antiret-

roviral treatment has failed has been demonstrated in various

countries [197–202].

VIRAL CORECEPTOR USE TESTING

Phenotypic assays to determine coreceptor use (i.e., tropism

testing) require the amplification of env sequences from plasma

HIV-1 RNA and the construction of viral pseudotypes or in-

fectious recombinant viruses that express the patient-derived

env sequences along with a reporter gene [182]. These pseu-

dotyped viruses or viral recombinants are then inoculated onto

cells that express CD4 along with CCR5 or CXCR4. The pres-
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ence of infection is detected by assays that determine reporter-

gene activity. HIV-1 isolates that use CCR5 exclusively are

termed R5 viruses, those that use only CXCR4 are termed X4

viruses, and those that use both are termed R5/X4, or dual-

tropic viruses. Because these assays do not distinguish between

the presence of truly dual-tropic viruses and a mixture of R5

and X4 viruses, samples that can infect both CCR5- and

CXCR4-expressing cells are often termed dual-mixed viruses.

As with commercially available resistance tests, tropism testing

generally requires a plasma sample with an HIV-1 level of

�1000 copies/mL. The assay used in most clinical trials of

CCR5 antagonists can detect the presence of CXCR4-using vi-

rus when they constitute at least 5%–10% of the virus popu-

lation as minor variants [182]. Assays with improved sensitivity

for detection of 0.3% CXCR4-using or dual-mixed virus are

now available [203].

Genotypic approaches to determining coreceptor use depend

on sequencing the V3 loop and applying one of a variety of

predictive algorithms. The 2 most commonly used measures

for predicting CXCR4 use include (1) the presence of positively

charged amino acids at positions 11 and 25, often referred to

as the “11/25 rule,” and (2) the total charge of V3 loop amino

acid residues of +5 or greater [204, 205]. Bioinformatic ap-

proaches include the use of position-specific scoring matrices

[206], neural networks [207], or machine-learning techniques

[208]. The heteroduplex tracking assay has also been used to

detect the presence of CXCR4-using virus [209]. In this assay,

the electrophoretic mobility of PCR-amplified env genes is as-

sayed after hybridization to V3-coding sequences from viruses

with phenotypically defined coreceptor use. When verified

against phenotypic assays, genotypic approaches showed ex-

cellent specificity but poor sensitivity for detecting the presence

of dual-mixed or CXCR4 viruses in clinical samples [210]. The

low sensitivity of these methods is explained, in part, by the

extensive heterogeneity of HIV-1 env genes in plasma virus

populations, which makes it difficult to obtain coherent se-

quence data with population-based sequencing approaches. An-

other contributing factor is that not all determinants of viral

tropism reside in the V3 loop. For these reasons, genotypic

approaches cannot be recommended at present for identifying

patients who may be suitable candidates for CCR5 antagonist

therapy. Other limitations of genotyping for coreceptor tropism

include the inability of population sequencing to detect variants

that comprise !25% of the virus population and the lack of

interpretation algorithms for sequences that are not from sub-

type B.

Drug Resistance in Non–Subtype B HIV

Antiretroviral drug design, resistance research, and interpre-

tation systems have been largely based on HIV-1 subtype B

viruses, which have historically been the most prevalent subtype

in North America, Western Europe, and Australia. However,

subtype B viruses account for only ∼12% of the worldwide

HIV-1 infections, with subtype C viruses being the most prev-

alent, accounting for ∼50% of cases [211]. An increasing num-

ber of individuals who are infected with many of the non–

subtype B virus strains now receive antiretroviral therapy

because of rollout programs in the resource-limited world and

because of increasing migration to the developed world, par-

ticularly to countries in Europe. It is essential to appreciate how

HIV-1 genetic variation alters the characteristics of drug sus-

ceptibility and drug resistance. The differences in the natural

polymorphisms between HIV-1 subtype B and non–subtype B

viruses have been well documented [212, 213]. The effects of

viral subtype on resistance are expressed in 2 broad cases: in

genetic routes to, and frequency of, specific mutations and in

the algorithms developed for interpreting drug resistance.

Genetic routes to and frequency of specific resistance

mutations. Viruses from patients infected with subtypes C,

G, or CRF_01 AE for whom a first-line nelfinavir-containing

regimen is failing preferentially select the L90M mutation,

rather than D30N, which more frequently occurs with subtype

B virus [214, 215]. This preferential selection of L90M in pro-

tease may stem from methionine polymorphism in these non–

subtype B viruses at position 89, rather than from lysine in

subtype B [216].

Synonymous differences are also responsible for different

resistance mutations. For example, valine at position 106 of

reverse transcriptase is coded by a GTG codon in subtype C,

in contrast with coding by a GTA codon in subtype B. Thus,

subtype C viruses more readily select methionine in the pres-

ence of efavirenz (a 1-nucleotide change), whereas subtype B

viruses change to an alanine (a 1-nucleotide change) [217]. The

V106M mutation is responsible for broad cross-resistance to

older NNRTIs [218]. A further example is at reverse transcrip-

tase position 210; subtype F viruses require 2 nucleotide sub-

stitutions for L210W to emerge, compared with the 1 mutation

required by other subtypes. This difference explains the lower

prevalence of L210W in cohorts of patients with subtype F

infection [219]. An even more intriguing finding is the in-

creased prevalence of K65R in reverse transcriptase from sub-

type C virus–infected patients receiving tenofovir or didano-

sine-containing regimens, compared with the prevalence in

reverse transcriptase from patients infected with other virus

subtypes. Although synonymous differences at reverse tran-

scriptase position 65 exist, these do not change the number of

substitutions required for the K65R mutation. One possible

explanation for this is that the longer string of adenines in the

reverse-transcriptase gene preceding the codon that codes for

K65 in subtype C viruses favors increased slippage of the re-

verse-transcriptase enzyme during transcription, thus encour-

aging mutations at position 65 [220, 221].
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Table 2. Summary of clinical situations in which resistance testing is recommended.

Clinical setting Comments

Before initiation of therapy
Primary (acute and early) infection Resistance testing is recommended. Initial therapy may be altered based on re-

sistance test results.
First evaluation of chronic HIV-1 infection Resistance testing is recommended, including for patients for whom therapy is

delayed, because plasma wild-type isolates may replace drug-resistant virus
with time in the absence of treatment.

Treatment initiation for chronic HIV-1 infection Resistance testing is recommended because of a rising prevalence of baseline
HIV-1 drug resistance in untreated patients with chronic infection [25], unless
preexisting data or stored samples for testing are available.

In antiretroviral-treated patients
Treatment failure Resistance testing is recommended. The decision to change therapy should in-

tegrate treatment history, new and prior resistance results (if available), and
evaluation of adherence and possible drug interactions.

In specific settings
Pregnancya Resistance testing is recommended before initiation of therapy to effectively

treat the mother and prevent mother-to-child transmission.
Other considerations and general recommendations Postexposure prophylaxis should consider treatment history and resistance data

from the source, when available;
A sudden increase in HIV-1 plasma RNA may reflect superinfection, possibly

with drug-resistant virus;
Plasma samples to be tested for drug resistance should contain at least 500

HIV-1 RNA copies/mL to ensure successful PCR amplification required for all
sequencing approaches;

It is preferable that the blood sample for resistance testing be obtained while
the patient is receiving the failing regimen, if possible;

Resistance testing should be performed by laboratories that have appropriate
operator training, certification, and periodic proficiency assurance;

Genotypic and phenotypic test results should be interpreted by individuals
knowledgeable in antiretroviral therapy and drug resistance patterns;

Inhibitory quotient testing is not recommended for clinical decision making.

a If resistance test results are available from before the pregnancy, clinical judgment should guide whether retesting for resistance is necessary.

Drug resistance algorithms for non–subtype B HIV.

The consensus sequence used for many algorithms, against

which changes are identified in sequences from tested patients,

is a subtype B sequence. This becomes problematic for subtypes

in which some “resistance” mutations actually reflect the wild-

type consensus for that subtype. This disparity is particularly

apparent for minor protease mutations. For instance, 6 subtype-

specific polymorphisms in protease (at positions 10, 20, 33, 36,

82, and 93) occur at sites known to be associated with drug

resistance in subtype B viruses. These amino acid substitutions

may represent the consensus sequence for more than 1 non–

subtype B virus, such as M36I in subtypes A, C, D, F, G, CRF01,

and CRF02. Most of the polymorphisms are located outside

the active site of the protease [222], such as M36I, which is

situated in the hinge region of the enzyme flap. Only in subtype

G is a polymorphism present in the active site of the enzyme

(V82I).

Several reports have suggested similar in vitro susceptibilities

to antiretroviral drugs among different group M subtypes [223,

224]. No differences in response to therapy among these sub-

types have been reported [195, 225]. The practical implication

of these polymorphisms is that resistance algorithms may over-

interpret resistance to specific drugs because of the inclusion

of these polymorphisms in the total number of identified re-

sistance mutations. This applies particularly to PIs, for which

the total number of mutations is often used to ascribe suscep-

tibility. Therefore, subtype determination should be included

in genotypic resistance testing. Because the selection of mu-

tations is incompletely characterized in non–subtype B viruses,

it would be beneficial to compare their sequences before treat-

ment and at treatment failure.

CLINICAL APPLICATIONS AND
RECOMMENDATIONS

Clinical applications and recommendations are shown in table

2. The essential strategy behind the use of resistance testing for

individual patient management is to provide information to

assist in the selection of antiretroviral regimens that achieve

and maintain virologic suppression—that is, plasma HIV-1

RNA levels below the lower limits of detection of the most

sensitive assays available for routine clinical use (50 copies/

mL).
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Untreated, Established HIV-1 Infection

Because of the prevalence of primary HIV-1 resistance to an-

tiretroviral drugs in developed countries, resistance testing is

recommended for all patients at the time of diagnosis of HIV-

1 infection as part of the initial, comprehensive assessment

[AII]. This recommendation is not restricted to patients for

whom initiation of antiretroviral treatment is being considered

on the basis of clinical, immunologic, or virologic criteria. The

persistence of detectable mutations acquired at the time of HIV-

1 infection varies, with some (e.g., the reverse-transcriptase

K103N mutation) having the potential to persist for years and

others (e.g., the reverse-transcriptase M184V mutation) having

a greater potential for reversion [30]. Thus, establishing a drug-

susceptibility profile for a patient’s virus at the time of diagnosis

can be helpful in antiretroviral decision-making years later be-

cause of the ability of archived drug-resistant virus to reemerge

in cases of suboptimal therapy. Genotypic testing is recom-

mended [AIII] for the initial evaluation, because mutations that

may not yet have accumulated enough to affect phenotypic

susceptibility can be detected, HIV-1 subtype can be deter-

mined, and the cost of genotypic testing is lower than that for

phenotypic testing.

Treatment Failure

First or second treatment failure. Because of the high prev-

alence of infection due to drug-resistant virus among antiret-

roviral-treated patients with confirmed, detectable plasma virus,

drug resistance testing should be performed in all cases of treat-

ment failure [AI] (defined as an insufficient decrease or an

increase in plasma HIV-1 RNA level after 1–2 months of treat-

ment or a confirmed viral breakthrough in a patient with pre-

viously undetectable virus). However, genotypic and pheno-

typic resistance assays both have low amplification success rates

in specimens with plasma HIV-1 RNA levels !500 copies/mL.

Resistance to specific drugs may not always be detected if treat-

ment with the drug has been discontinued before the sample

is obtained, because resistant strains are often less fit than wild-

type virus and may persist only as undetectable minor sub-

species in the absence of drug pressure. Therefore, a specimen

for resistance testing should be obtained before treatment has

been discontinued or changed, and if treatment has been dis-

continued, the specimen should be obtained as quickly as pos-

sible thereafter. In addition, antiretroviral treatment history is

important, along with resistance data, in choosing the subse-

quent treatment regimen, especially if the treatment has been

discontinued for several weeks.

Resistance is not the only cause of treatment failure. Insuf-

ficient drug exposure, often resulting from incomplete adher-

ence to therapy, is the most common reason for failure of an

initial treatment regimen. However, continuing therapy in the

context of treatment failure will often lead to the emergence

and accumulation of additional resistance mutations. This ap-

plies particularly to drugs with low genetic barriers to resistance

(e.g., the NNRTIs, lamivudine, emtricitabine, enfuvirtide, and

raltegravir). Clinical resistance to ritonavir-boosted PIs often

emerges at a slower pace, requiring several mutations. There-

fore, rapid evaluation and prompt action should occur at the

time of treatment failure. For first and second treatment fail-

ures, genotypic resistance testing usually suffices, unless the

patient had initially acquired multidrug-resistant virus. Current

commercially available resistance assays report results for

NRTIs, NNRTIs, and PIs. Viral tropism assays that determine

whether a patient’s virus population is predominantly R5, X4,

or dual-mixed are used to indicate whether CCR5 antagonists

(e.g., maraviroc) may be an appropriate choice for patients with

treatment failure. Tropism determination may be useful in this

circumstance [BIII]. It is expected that susceptibility testing for

INSTIs (e.g., raltegravir) will be clinically available in the near

future.

Multiple treatment failures (advanced treatment failure).

In patients who experience multiple treatment failures, the virus

is often resistant to NRTIs, NNRTIs, and PIs. Until recently,

constructing potent alternative regimens that combined 2 or 3

fully active drugs was often impossible, despite the use of en-

fuvirtide, because of the high level of intraclass cross-resistance.

The increased availability of new drugs—including drugs from

existing classes but with low levels of intraclass cross-resistance,

such as darunavir and etravirine, and drugs from new classes,

such as maraviroc and raltegravir—have made the goal of at-

taining undetectable viral loads more realistic for patients with

numerous treatment failures [9]. In this situation, tropism de-

termination is recommended [AI], and phenotypic testing may

be a useful addition to genotypic testing, because the number

of mutations and the complexity of mutational interactions

may make genotypic interpretation challenging. However, phe-

notypic testing may not be available because of cost. Genotypic

testing is recommended for patients with multiple treatment

failures [AI], along with phenotypic testing, if available [AI].

The decision to change therapy and the selection of the new

regimen should be discussed with experts who are knowledge-

able in antiretroviral therapy, antiretroviral pharmacology, and

resistance patterns.

Special Circumstances

Acute and early phase HIV-1 infection. Genotypic resistance

testing is recommended for any patient who presents within

several months after HIV-1 infection because of the high re-

ported rates of transmitted drug resistance [AII]. If immediate

antiretroviral intervention is indicated, the initiation of treat-

ment should not be delayed until this result is available, because

the turnaround time may be �2 weeks; rather, treatment should

be modified if the result demonstrates resistance to �1 com-
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ponent of the regimen. The initial choice of treatment should

also take into account the treatment history of the source pa-

tient and resistance data for that patient’s virus, if available. If

treatment is not initiated during the acute or early phases of

infection, the resistance test results will still be helpful in the

future, because early testing provides the best opportunity to

detect transmitted drug resistant virus that has been archived

and replaced by more-susceptible virus but which could emerge

later during treatment.

Pregnancy. Genotypic resistance testing is recommended

for all HIV-1–infected pregnant women with detectable plasma

virus, both for their own health and for the health of their

infants [AII]. This information will assist with treatment

choices for the mother, as well as with choices to prevent

mother-to-child HIV-1 transmission (including multidrug-re-

sistant HIV-1 transmission) by selecting a regimen that will be

effective and safe for the fetus.

Postexposure prophylaxis. The question of whether to ini-

tiate postexposure prophylaxis occurs primarily in 2 settings:

accidental exposure of a health care worker and high-risk sexual

exposure. In the former circumstance, drug resistance data from

the source may be useful in constructing a prophylactic regi-

men. In the case of high-risk sexual exposure, data on the source

are usually not available.

SUMMARY AND FUTURE DIRECTIONS

Antiretroviral drug resistance is present wherever antiretroviral

drugs are widely used, and as treatment rollout continues in

developing countries, the range of resistance will expand. The

incidence, prevalence, and transmission of drug-resistant vi-

ruses vary from country to country, and programs for world-

wide drug resistance surveillance should increase rapidly to

meet the emerging need. In developing countries, methods to

simplify specimen collection, storage, and testing should be

explored to facilitate better monitoring of individual patients

and community patterns.

The approval of several new antiretroviral drugs from dif-

ferent classes since our previous recommendations [3] has in-

creased the complexity of resistance testing and interpretation

in the developed world. Resistance testing for entry inhibitors

and INSTIs should be incorporated into routine management

when such testing becomes available and validated.

Techniques for resistance testing have become more stan-

dardized since our previous recommendations and have been

widely incorporated into routine management in the developed

world. Coreceptor tropism testing has also become available.

Future efforts should be made to increase the sensitivity of

these assays to better detect minor variants that may be of

clinical significance. Moreover, as resistance testing becomes

increasingly employed in developing countries, attention

should be given to detecting resistance patterns for non–sub-

type B strains of HIV and to establishing algorithms for eval-

uating their importance.
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